Novel and Efficient Synthesis of Rotenoids via Intramolecular Radical Arylation

S. Asiah Ahmad-Junan, Peter C. Amos and Donald A. Whiting* Chemistry Department, The University, Nottingham, NG7 2RD, UK

Abstract

Treatment of the iodoarylchromenes 22 with palladium acetate gave the tetracyclic compounds 23 via a formal but stereochemically disallowed Heck reaction; a crystalline intermediate palladium species 25 (X-ray analysis) was isolated. The method was employed to synthesise the natural rotenoid (\pm)-munduserone 29 . Related reductive radical cyclisation of enol acetate 31 gave the (\pm)$6 \mathrm{a} \alpha, 12 \alpha, 12 \mathrm{a} \alpha$-chromenochromenol acetate $32(\mathrm{R}=\mathrm{Ac})$, representing the core structure of the insecticidal rotenoid 2, in a 5 step (15\% overall) route from 2 -methylthiomethylchromone 17. The cis,cis-geometry is obtained stereospecifically through an intramolecular 6-exo addition mode.

Natural rotenone 1 and its relatives show various biological activities, the best known of which is insecticidal action. ${ }^{1}$ The physiological basis of this activity has been much studied, ${ }^{2}$ and shown to involve antagonism of NADH-ubiquinone reductase in Complex I of mitochondria, inhibiting electron transport.

Antifeedant ${ }^{3}$ and piscidal ${ }^{4}$ activities are also known, the latter valued in fish farming and aquatic conservation; rotenone also blocks microtubule formation. ${ }^{5}$ Rapid oxidative detoxification reduces environmental hazards. Structure-activity relationships have been investigated, ${ }^{6}$ but have been largely confined to compounds obtained through manipulation of the natural products. The intact $\mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$ ring system appears to be necessary. Synthetic studies ${ }^{7}$ on this distinctive ring system have continued for many years in a search for an approach which would be sufficiently brief and effective to allow more thorough study of the structural requirements for activity.

Previous, relatively lengthy, syntheses have depended on thermodynamic control to attain the cis-B/C junction, which is preferred in 12a-epimerisation of the 12 -ketones. ${ }^{8}$ We wished to obtain the cis-geometry by a kinetically preferred process, dispensing with the necessity of the carbonyl function. We chose as target the core tetracycle 32 of the $(12 S)$-alcohol 2 , known to be particularly active in in vitro studies of electron transport inhibition. In this paper we report a brief, good yielding, and stereoselective synthesis of tetracycle 32, which has potential for development as an enantioselective route; a synthesis is also described of (\pm)-munduserone 29,9 the simplest natural rotenoid.

The essential disconnections for the route selected as shown in Scheme 1. The key bond forming step for the closure of ring B is seen as intramolecular arylation of an alkene or enolate, and the intermediate chromenes 3 are to be derived from well known chromones 4. In the event, we found that the 1a-12a linkage could be achieved in several ways, but at the start of our work we concentrated on an approach using additions of aryl palladium species.

Aryl iodides of general type 5 a would, under the conditions of the Heck reaction, be expected to generate an aryl palladium

3

Scheme 1
species $\mathbf{5 b}$, leading on through syn addition to an intermediate 6. This intermediate would lack the syn $\mathrm{Pd}-\mathrm{H}$ stereochemistry considered necessary for elimination to an alkene 7, but could yield a substitution product 8 by reaction with a suitable nucleophile (Scheme 2). Intermolecular reactions ${ }^{10}$ following

5a $X=1$ b $X=\operatorname{Pdl}(\mathrm{lig})_{2}$

8

6

7
Scheme 2
such a course are known and in agreement we have observed that treatment of 2 H -chromene 9 with phenylmercury(ii) chloride and dilithium palladium tetrachloride in methanol gives the methoxy adduct 10 (Scheme 3). In contrast, however, 2 H -chromene 9 reacted with iodobenzene and palladium acetate in acetonitrile-methanol ${ }^{11}$ to give 4 -phenyl- 4 H chromene 11 and, unexpectedly, 3-phenyl-2H-chromene 12a (Scheme 3). Chromenes 12a and 11 were obtained in 54 and 1\%

12a $R=H$
13
b $\mathrm{R}=\mathrm{OMe}$
Scheme 3 Reagents: i, $\mathrm{PhHgCl}, \mathrm{Li}_{2} \mathrm{PdCl}_{4}, \mathrm{MeOH} ;$ iii, $\mathrm{PhI}, \mathrm{Pd}(\mathrm{OAc})_{2}$, $\mathrm{MeCN}-\mathrm{MeOH}$
yield respectively, using $50 \mathrm{~mol} \%$ palladium acetate; at 100 $\mathrm{mol} \%$ the yields were 23 and 10%. The former could arise by syn-addition/syn-elimination, but the latter must arise by a different mechanism, since syn-elimination from an intermediate 13 is not possible. No methoxy-containing products were observed.

We then proceeded to examine intramolecular cases. For this purpose we needed the aryloxymethylchromenes 22 . These were obtained from the corresponding chromones as follows. 2Bromomethylchromones have been prepared by the action of N bromosuccinimide on the 2 -methylchromones, ${ }^{12.13}$ but yields were poor, and in our hands separation of the mono-, di- and non-brominated products proved difficult. Alternatively, condensation of 2-hydroxy-4-methoxyacetophenone 14 b with ethyl ethoxyacetate, and acid-catalysed cyclisation, gave 2-ethoxymethyl-7-methoxychromone 15 (53%), which was converted into the desired bromo compound 16 (53%) by treatment with hydrogen bromide, ${ }^{13}$ in fair yield, albeit under rather severe conditions (Scheme 4). A mild and more

Scheme 4 Reagents and conditions: i, $\mathrm{EtOCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}, \mathrm{THF}$; ii, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{EtOH}$; iii, HBr ; iv, $\mathrm{ArOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, dry $\mathrm{Me}_{2} \mathrm{CO}$, reflux; v , $\mathrm{MeSCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{NaH}$, THF; vi, $\mathrm{HCl}, \mathrm{MeOH}$; vii, MeI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux
satisfactory route followed via condensation of 2-hydroxyacetophenone 14a with ethyl methylthioacetate which, after ring closure of the intermediate diketone in acid, afforded the methylthiomethylchromone 17 (44%). Transformation of this product to 2 -iodomethylchromone 18 (72%) was slowly but smoothly effected by reaction with methyl iodide. ${ }^{14}$ The iodide

18 reacted with 2 -iodophenol to provide 2-aryloxymethylchromone 19a (57%), while similar treatment of 16 gave $19 b$ (66%). To obtain the (2-iodo-3,4-dimethoxyphenoxy)chromone 19c, the bromide 16 was treated with 3,4-dimethoxyphenol to provide chromone $20(79 \%)$, which was iodinated (iodinemercuric oxide) to afford $19 \mathrm{c}(61 \%)$. The chromones 19 underwent conjugate reduction with sodium borohydride to yield the chromanols $21(67-99 \%)$, which readily dehydrated in toluene with toluene-p-sulfonic acid to the required chromenes 22 (76-95\%) (Scheme 5).

Scheme 5 Reagents: i, NaBH_{4}, THF, reflux; ii, PTSA, Toluene, reflux
Treatment of the iodoarylchromene 19 a with palladium acetate in acetonitrile-methanol then formed the tetracyclic compound 23a (58%), m.p. $109-110^{\circ} \mathrm{C}$. The analogous transformations of the iodides 19b and 19c to the crystalline compounds 23 b and 23 c also proceeded readily. In the case of the cyclization of $\mathbf{1 9 b}$ at slightly lower temperature, a second

25

26
crystalline product was obtained. Mass spectrometry indicated that this product contained palladium (distinctive isotope pattern), and the compound was examined by single-crystal X-ray analysis, ${ }^{15}$ revealing structure 25 , i.e. the product of oxidative palladium insertion into the $\mathrm{Ar}-\mathrm{I}$ bond. This compound decomposed quantitatively in refluxing toluene to tetracyclic compound 23b and elemental palladium. No products were observed of type 24 , which would result from displacement of palladium from the benzylic site after cyclisation.

As this nominal 'intramolecular Heck reaction' is stereochemically disallowed, an alternative mechanism must apply. Since our preliminary communication, ${ }^{16 a}$ two groups have reported similar 'disallowed' intramolecular Heck reactions, ${ }^{16 b . c}$ and it has been noted that palladium occupies the benzylic site in such reactions, and either facile stereomutation occurs, or a trans-elimination. ${ }^{16 c}$ In view of the simple thermolytic cyclisation of the palladium species 25 in hydrocarbon solvent, we felt that a homolytic process via 26 must be considered. We were thus prompted to investigate a different method for cyclisation, generally considered to proceed through a radical mechanism. Iodide 19a was treated with cobalt(1) salen, and the resulting aryl cobalt intermediate was photolysed; ${ }^{17}$ compound 23a was obtained in 40% yield, providing some circumstantial support for a radical Heck process. Whatever the mechanism, the reaction offered a simple entry into the tetracyclic system $\mathbf{2 3}$, and we then explored conversion of this system to a natural rotenoid.
Reaction of compound 23 c with borane-dimethyl sulfide was disappointingly unspecific, giving stereoisomers of both 12- and 12 a -alcohols, while bulkier boranes failed to react. To overcome the regiospecificity problem, the tetracyclic compound was treated with osmium tetraoxide -N -methylmorpholine N -oxide, to yield the diol 27 ; oxidation to the rotenolone 28 was followed by zinc effected deoxygenation, to afford (\pm)-munduserone 29^{9} (Scheme 6) (20% over 3 steps from 23c), identified by ${ }^{1} \mathrm{H}$ NMR

27

Scheme 6 Reagents: i, OsO_{4}. $\mathrm{NMMO}_{\mathrm{i}} \mathrm{ii}, \mathrm{MnO}_{2} ;$ iii, $\mathrm{Zn}, \mathrm{AcOH}$
comparison with other rotenoids. ${ }^{18}$ The stereochemistry of 27 and 28 followed by comparison with the parallel chemistry of natural rotenone and isorotenone. ${ }^{19}$ The cis-B/C-fusion apparent in munduserone is the thermodynamically favoured geometry. ${ }^{8}$

At this stage, the potential of radical addition for attaining both the desired stereochemistry and placing a 12-oxygen substituent had become apparent to us. We first treated the chromene 22a with tributyltin hydride in refluxing benzene, using AIBN (azoisobutyronitrile) initiator, and were pleased to
obtain the tetracycle $\mathbf{3 0}(74 \%)$ as a single stereoisomer. The cisgeometry was demonstrated by ${ }^{1} \mathrm{H}$ NMR spectroscopy ($J_{6 a .12 \mathrm{a}}$ $4.4 \mathrm{~Hz}, c f . J_{6 \mathrm{a} .12 \mathrm{a}} 4.8 \mathrm{~Hz}$ in the parallel cis-compound derived from natural rotenone, with $J_{6 a .12 \mathrm{a}} 9.5 \mathrm{~Hz}$ for its transcounterpart). ${ }^{20} 12$-Oxygenation was introduced by oxidation of the alcohol 21a to the corresponding chromanone and formation of the enol acetate 31 using isopropenyl acetate. Alternatively, chromone 19a underwent efficient (85\%) conjugate reduction with diisopinocampheyl borane to the saturated ketone, to give a shorter route to the enol acetate 31. Under the conditions used, a low optical rotation was recorded for the product ketone, but the m.p. was, within experimental error, the same as that of the racemic material. Reaction of the enol ester 31 gratifyingly afforded the acetate $32(R=A c)$ (62%), showing $J_{6 a 12 \mathrm{a}} 5.1 \mathrm{~Hz}$, and $J_{12.12 \mathrm{a}} 5.3 \mathrm{~Hz}$, demonstrating the all-cis arrangement of hydrogen atoms at the contiguous chiral centres. Alkaline hydrolysis gave the alcohol 32 ($\mathrm{R}=\mathrm{H}$) (Scheme 7), which has been oxidised previously ${ }^{21}$ to the core tetracycle of the rotenoids.

Scheme 7 Reagents and conditions: $\mathrm{i}, \mathrm{Bu}_{3} \mathrm{SnH}$, AIBN , benzene, reflux; ii, PCC; iii, isopropenyl acetate, H^{+}; iv, (IPC) $)_{2} \mathrm{BH}$

Thus the parent cis,cis-A/B/C/D system of the rotenoid alcohol 2 has been prepared in five steps from the chromone 17, with an overall yield 15%. This is a marked improvement in efficiency over previous routes. In addition, chiral conjugate reduction of the chromone could open the way to an enantiospecific sysnthesis. This awaits further work.

Experimental

General.-For experimental generalisations, see J. Chem. Soc., Perkin Trans. 1, 1991, 1901.
trans-4-Methoxy-3-phenllchroman 10.-2H-Chromene (0.25 g), lithium chloride (0.17 g), palladium(II) chloride (0.35 g), and phenyl mercuric chloride (0.5 g) were stirred together in dry methanol ($20 \mathrm{~cm}^{3}$) under nitrogen at room temperature for 12 h . The solution was diluted with aq. sodium chloride and extracted with benzene ($3 \times 50 \mathrm{~cm}^{3}$). The dried extracts were evaporated and the residue was chromatographed on silica (cyclohexaneether, $10: 1$) to yield the title compound as a pale yellow gum ($0.13 \mathrm{~g}, 28 \%$) (Found: C, $79.85 ; \mathrm{H}, 6.75^{\circ} \% \mathrm{M}^{+}, 240 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.97 ; \mathrm{H}, 6.71_{\%}^{\circ} ; M, 240$); $v_{\text {max }} / \mathrm{cm}^{-1} 3060,3040,2940$, $2820,1610,1590,1120$ and $1010 ; \delta_{\mathrm{H}} 3.35$ (1 H , ddd, $J 3.6,5.4,5.6$, $3-\mathrm{H}), 3.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.30 (1 H , dd, J 5.6, 11.2, $2-\mathrm{Ha}$), 4.44 ($1 \mathrm{H}, \mathrm{dd}, J 3.6,11.2,2-\mathrm{Hb}), 4.51(1 \mathrm{H}, \mathrm{d}, J 5.4,4-\mathrm{H}), 6.85-6.96$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.17-7.32 (7 H, m, ArH).

3-Phenyl-2H-chromene 12a and 4-Phenyl-4H-chromene 11.2 H -Chromene $(0.25 \mathrm{~g})$, iodobenzene (1.81 g), palladium(iI) acetate $(0.3 \mathrm{~g})$ and triphenylphosphine $(0.6 \mathrm{~g})$ were dissolved in dry acetonitrile ($4 \mathrm{~cm}^{3}$), triethylamine ($1.7 \mathrm{~cm}^{3}$) and methanol
$\left(2 \mathrm{~cm}^{3}\right.$), and the mixture was heated at $80^{\circ} \mathrm{C}$ under argon for 12 h . The solution was then evaporated and the residue was chromatographed on silica (light petroleum-ether, 8:1) to yield first 3 -phenyl- 2 H -chromene ($0.1 \mathrm{~g}, 25 \%$), m.p. $91-91.5^{\circ} \mathrm{C}$ (Found: C, 86.35; H, 5.9\%; $\mathbf{M}^{+}, 208 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 86.51$; H, $5.81 \% ; M, 208.089$); $v_{\text {max }} / \mathrm{nm}(\varepsilon) 241$ (4.27), $247 \mathrm{infl}(4.21), 293$ (4.08), $303 \mathrm{infl}(4.05)$ and 329 (4.09); $v_{\text {max }} / \mathrm{cm}^{-1} 3000,2980,1600$ and $1120 ; \delta_{\mathrm{H}} 5.20\left(2 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{H}_{2}\right), 6.86(1 \mathrm{H}, \mathrm{t}, J 1,4-\mathrm{H})$, 6.91-7.45 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.47(5 \mathrm{H}, \mathrm{PhH})$, followed by 4-phenyl-4H-chromene ($0.04 \mathrm{~g}, 10 \%$), as a gum (Found: M^{+}, 208.088); $\delta_{\mathrm{H}} 4.69$ (1 H, dd, $J 2,4,4-\mathrm{H}$), $5.04(1 \mathrm{H}, \mathrm{dd}, J 4,6$, 3-H), $6.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,6,2-\mathrm{H}), 6.90-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.32 ($5 \mathrm{H}, \mathrm{PhH}$).
In a repeat reaction using palladium(II) acetate (0.22 g), the yields of chromenes 12a and 11 were 54 and 1% respectively.

7-Methoxy-3-phenyl-2H-chromene 12b.-7-Methoxy-2Hchromene (0.2 g), palladium(II) acetate (0.28 g), triphenylphosphine (0.6 g) and iodobenzene ($0.2 \mathrm{~cm}^{3}$) were added to dry acetonitrile ($4 \mathrm{~cm}^{3}$) containing triethylamine ($1.3 \mathrm{~cm}^{3}$), and the mixture was heated at $80^{\circ} \mathrm{C}$ for 12 h . The product was evaporated and the residue was filtered through alumina (grade III, chloroform elution). Evaporation and chromatography on silica using light petroleum-ether, 7:1, afforded the title compound as cream crystals $\left(0.1 \mathrm{~g}, 35 \%\right.$), m.p. $95-96^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 80.2 ; \mathrm{H}, 5.9 \% ; \mathrm{M}^{+}, 238 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.65 ; \mathrm{H}$, $5.92 \% ; M, 238) ; v_{\max } / \mathrm{cm}^{-1} 2900,2830,1610,1120$ and $970 ; \delta_{\mathrm{H}}$ $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.14\left(2 \mathrm{H}, \mathrm{d}, J 1,2-\mathrm{H}_{2}\right), 6.46(1 \mathrm{H}, \mathrm{d}, J 2,8-\mathrm{H}$), 6.48 ($1 \mathrm{H}, \mathrm{dd}, J 2,8,6-\mathrm{H}$), $6.79(1 \mathrm{H}, \mathrm{t}, J 1,4-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{d}, J 8$, 5-H) and 7.27-7.46 (5 H, m, PhH).

2-Methylthiomethylchromen-4-one 17.-2-Hydroxyacetophenone (28.7 g) and ethyl 2-(methylthio)acetate (56.5 g) in dry tetrahydrofuran (THF) $\left(50 \mathrm{~cm}^{3}\right)$ were added dropwise under nitrogen to a slurry of sodium hydride $(40 \mathrm{~g}, 60 \%$ oil dispersion) in THF ($50 \mathrm{~cm}^{3}$), over 45 min . The mixture was stirred during addition with occasional ice cooling. When addition was complete, the mixture was refluxed on steam for 30 min , cooled, quenched with water, and washed with ether. The aqueous phase was diluted with methanol, acidified with conc. hydrochloric acid (ca. $150 \mathrm{~cm}^{3}$), and refluxed for 30 min . The cooled product was extracted with chloroform. The dried extracts were evaporated, and the residue was chromatographed on silica (ethyl acetate-hexane, $1: 1$), to yield the title compound $\left(19.2 \mathrm{~g}, 44 \%\right.$), m.p. $89-90^{\circ} \mathrm{C}$ (Found: C, $64.15 ; \mathrm{H}, 4.7 \% ; \mathrm{M}^{+}$, 206.037. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.06 ; \mathrm{H}, 4.89 \% ; M, 206.040$); $v_{\text {max }} / \mathrm{cm}^{-1} 1643$ and $1610 ; \delta_{\mathrm{H}} 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $6.35(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.41-7.68(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $8.25(1 \mathrm{H}, \mathrm{dd}, J 3$, $8,5-\mathrm{H}$).

2-Iodomethylchromen-4-one
18.-2-Methylthiomethyl-chromen-4-one (10.0 g) was refluxed in dichloromethane (10 cm^{3}) with methyl iodide (200 g) for 3 d , when the mixture was cooled and filtered. The filtrate was concentrated and set aside at room temperature when the title compound ($11.2 \mathrm{~g}, 72 \%$) crystallised out as yellow needles, m.p. $140-142^{\circ} \mathrm{C}$ (Found: C, 41.7; $\mathrm{H}, 2.45 \%$; M^{+}, 285.949. $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{IO}_{2}$ requires $\mathrm{C}, 41.99 ; \mathrm{H}$, $2.47 \% ; M, 285.949)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1640$ and $1610 ; \delta_{\mathrm{H}} 4.38(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 6.45(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.36-7.76(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.24(1 \mathrm{H}$, dd, $J 3,8,5-\mathrm{H}$).

2-Ethoxymethyl-7-methoxychromen-4-one 15.-Sodium (2.5 g) was added slowly to a cooled solution of 2-hydroxy-4methoxyacetophenone (5 g) and ethyl ethoxyacetate ($10 \mathrm{~cm}^{3}$) in dry ether ($250 \mathrm{~cm}^{3}$). More ethyl ethoxyacetate ($9 \mathrm{~cm}^{3}$) and sodium metal (2.5 g) were then added. The mixture was stirred for 24 h and refluxed for 1 h when it was cooled, washed with water, acidified with acetic acid, and extracted with ether. The
ether extracts were washed with aq. sodium hydrogen carbonate, dried and evaporated. The residual oil was dissolved in ethanol ($125 \mathrm{~cm}^{3}$) with conc. sulfuric acid ($1 \mathrm{~cm}^{3}$), and the solution was refluxed for 30 min . Benzene was added and the mixture was distilled to remove solvent ($150 \mathrm{~cm}^{3}$). The cooled solution was diluted with ether and washed with aq. sodium hydroxide and water and dried. Evaporation and crystallization of the residue from light petroleum gave the title compound (3.5 g, 53%), m.p. $69-70^{\circ} \mathrm{C}\left(\right.$ lit., ${ }^{13}$ m.p. $70-71^{\circ} \mathrm{C}$) (Found: C, $66.8 ; \mathrm{H}$, $6.25 \% ; \mathrm{M}^{+}$, 234. Calc. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 66.81 ; \mathrm{H}, 6.02 \% ; M$, $234) ; \delta_{\mathrm{H}} 1.25(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 3.59\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2}\right), 3.94(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.12(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3$, $8-\mathrm{H}), 6.84(1 \mathrm{H}, \mathrm{dd}, J 3,9,6-\mathrm{H})$ and $7.94(1 \mathrm{H}, \mathrm{d}, J 9,5-\mathrm{H})$.

2-Bromomethyl-7-methoxychromen-4-one 16.-2-Ethoxy-methyl-7-methoxchromen-4-one (3 g) was dissolved in 48% hydrogen bromide in glacial acetic acid $\left(20 \mathrm{~cm}^{3}\right)$, and the solution was heated at $50^{\circ} \mathrm{C}$ for 24 h . Solvent $\left(10 \mathrm{~cm}^{3}\right)$ was distilled off, and the residue was diluted with water to yield the title compound ($1.4 \mathrm{~g}, 53 \%$), m.p. $141-142{ }^{\circ} \mathrm{C}$ from ethanol (lit., m.p. 141-142 ${ }^{\circ} \mathrm{C}$) (Found: C, 48.9; H, 3.5\%; $\mathbf{M}^{+}, 268,270$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrO}_{3}$: C, 49.10; $\mathrm{H}, 3.37 \% ; M, 268,270$); $\delta_{\mathrm{H}} 3.94$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 6.28(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.97(1 \mathrm{H}$, d, $J 7,8-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{dd}, J 2,9,6-\mathrm{H})$ and $8.13(1 \mathrm{H}, \mathrm{d}, J 9$, 5-H).

2-(2'-Iodophenoxymethyl)chromen-4-one 19a.-2-Bromo-methylchromen-4-one (1 g), 2-iodophenol (1.3 g) and potassium carbonate (0.9 g) were refluxed together in dry acetone ($10 \mathrm{~cm}^{3}$) for 5 h . Water was added and the mixture was extracted with chloroform. The extracts were washed with aq. sodium hydroxide and water, and dried. Evaporation of the solvent gave a solid which crystallised from methanol to yield the title compound ($0.9 \mathrm{~g}, 57 \%$), m.p. $148-149{ }^{\circ} \mathrm{C}$ (Found: C, $50.6 ; \mathrm{H}$, $3.05 \% ; \mathrm{M}^{+}, 377.976 . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{IO}_{3}$ requires $\mathrm{C}, 50.82 ; \mathrm{H}, 2.93 \% ; M$, $377.975)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3200 \mathrm{infl}, 3000,1660$ and $1620 ; \delta_{\mathrm{H}} 5.12(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 6.81(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.88-7.08\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}, 8-\mathrm{H}\right), 7.34-7.89(4$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.98 ($1 \mathrm{H}, \mathrm{dd}, J 2,8,3^{\prime}-\mathrm{H}$) and $8.37(1 \mathrm{H}, \mathrm{dd}, J 2,8,5-\mathrm{H}$).

A very similar preparation from 2-iodomethylchromen$4(4 \mathrm{H})$-one gave identical material in 74% yield.

2-(2'-Iodophenoxymethyl)-7-methoxychromen-4-one

19b.-2-Bromomethyl-7-methoxychromen-4-one (0.4 g) and 2iodophenol (0.38 g) were refluxed in acetone ($20 \mathrm{~cm}^{3}$) over anhydrous potassium carbonate (0.3 g) for 12 h . The mixture was diluted with water and extracted with chloroform. Evaporation of the dried organic extracts gave a solid which crystallised from methanol to yield the title compound $(0.4 \mathrm{~g}$, 66%), as brown crystals, m.p. $157-158{ }^{\circ} \mathrm{C}$ (Found: C, 49.85 ; H, $3.4 \% ; \mathrm{M}^{+}, 408 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{IO}_{4}$ requires $\mathrm{C}, 50.03 ; \mathrm{H}, 3.19 \% ; M$, 408); $v_{\text {max }} / \mathrm{cm}^{-1} 3060,1650,1610$ and $1510 ; \delta_{\mathrm{H}} 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.65(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.74-7.01(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.04(1 \mathrm{H}, \mathrm{dd}, J 3,9,6-\mathrm{H}), 7.26-7.51\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 7.88(1 \mathrm{H}, \mathrm{dd}$, $\left.J 2,8,3^{\prime}-\mathrm{H}\right)$ and $8.17(1 \mathrm{H}, \mathrm{d}, J 9,5-\mathrm{H})$.

2-(3',4'-Dimethoxyphenoxymethyl)-7-methoxychromen-4one 20.-2-Bromomethyl-7-methoxychromen-4-one (0.9 g) and 3,4 -dimethoxyphenol (0.6 g) were refluxed in acetone ($30 \mathrm{~cm}^{3}$) over anhydrous potassium carbonate (0.8 g) for 48 h . The solution was filtered and the filtrate was evaporated. The residue was chromatographed on a short silica column (chloroform) to yield the title compound ($0.9 \mathrm{~g}, 79 \%$), m.p. 133$135^{\circ} \mathrm{C}$ (Found: C, 66.4; H, 5.4\%; M ${ }^{+}$, 342. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, $66.66 ; \mathrm{H}, 5.30 \% ; M, 342$); $v_{\text {max }} / \mathrm{cm}^{-1} 1650,1610$ and $1020 ; \delta_{\mathrm{H}}$ 3.85, 3.88 and 3.91 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.45$ (1 H, dd, J 3, 9, $\left.6^{\prime}-\mathrm{H}\right), 6.46(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.61\left(1 \mathrm{H}, \mathrm{d}, J 3,2^{\prime}-\mathrm{H}\right), 6.78$ $\left(1 \mathrm{H}, \mathrm{d}, J 9,5^{\prime}-\mathrm{H}\right), 6.87(1 \mathrm{H}, \mathrm{d}, J 2,8-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{dd}, J 2,8$, $6-\mathrm{H})$ and $8.10(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H})$.

2-(2'-Iodo-4', 5'-dimethoxyphenoxymethyl)-7-methoxy-chromen-4-one 19c.-2-($3^{\prime}, 4^{\prime}$-Dimethoxyphenoxymethyl)-7-methoxychromen-4-one $(0.6 \mathrm{~g})$ in ethanol $\left(4 \mathrm{~cm}^{3}\right)$ at $50^{\circ} \mathrm{C}$ under nitrogen was treated with yellow mercuric oxide (0.4 g) followed by iodine (0.4 g). After 30 min the mixture was filtered through Kieselguhr and evaporated. The residue was eluted with chloroform through a short silica column to yield the title compound $(0.5 \mathrm{~g}, 61 \%)$, as orange cubic crystals, m.p. $186-$ $187^{\circ} \mathrm{C}$ from ethanol (Found: C, $49.0 ; \mathrm{H}, 3.65 ; \mathrm{I}, 27.09 \% ; \mathrm{M}^{+}$, 468. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{IO}_{6}$ requires $\mathrm{C}, 48.74 ; \mathrm{H}, 3.66 ; \mathrm{I}, 27.1 \% ; M, 468$); $v_{\text {max }} / \mathrm{cm}^{-1} 3080,1650,1600$ and $1020 ; \delta_{\mathrm{H}} 3.77,3.78$ and 3.84 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.85\left(2 \mathrm{H}, \mathrm{d}, J 0.8, \mathrm{CH}_{2}\right), 6.48\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right), 6.51$ (1 $\mathrm{H}, \mathrm{t}, J 0.8,3-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{d}, J 2,8-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{dd}, J 2,9,6-\mathrm{H})$, $7.13\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right)$ and $8.03(1 \mathrm{H}, \mathrm{d}, J 9,5-\mathrm{H})$.

2-(2'-lodophenoxymethyl)chroman-4-ol 21a.-2-(2'-Iodo-phenoxymethyl)chromen-4-one (1 g) in THF ($35 \mathrm{~cm}^{3}$) was treated with sodium borohydride (0.5 g) in ethanol-water ($1: 1$, $18 \mathrm{~cm}^{3}$). The reaction mixture was refluxed for 1.5 h , cooled, and THF was evaporated off. Ether ($20 \mathrm{~cm}^{3}$) was added and the mixture was washed with brine. The organic layer was dried and evaporated to yield the title compound ($1 \mathrm{~g}, 99 \%$), m.p. 137$138{ }^{\circ} \mathrm{C}$ from ethanol (Found: C, 50,$65 ; \mathrm{H}, 4.35 \% ; \mathrm{M}^{+}, 382$. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{IO}_{3}$ requires $\mathrm{C}, 50.28 ; \mathrm{H}, 3.96 \% ; M, 378$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$, 3000,1615 and $1580 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.86(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{OH}), 2.13$ (1 H, ddd, $J 9.8,10.3,13.2,3-\mathrm{Ha}), 2.61$ (1 H , ddd, $J 2.2,5.8,13.2$, $3-\mathrm{Hb}), 4.22(1 \mathrm{H}$, dd, $J 5.4,9.8,9-\mathrm{Ha}), 4.32(1 \mathrm{H}, \mathrm{dd}, J 5.1,9.8$, $9-\mathrm{Hb}), 4.61(1 \mathrm{H}$, dddd, $J 2.2,5.1,5.4,10.3,2-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{m}$, 4-H), 6.74 ($1 \mathrm{H}, \mathrm{m}$), $6.87(2 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{m})$, $731(1 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{d}, J 7.6,5-\mathrm{H})$ and $7.78\left(1 \mathrm{H}, \mathrm{d}, J 7.8,3^{\prime}-\mathrm{H}\right)$.

2-(2'-Iodophenoxymethyl)-7-methoxychroman-4-ol 21b.-2-(2'-Iodophenoxymethyl)-7-methoxychromen-4-one (2.2 g) was reduced with sodium borohydride $(1.1 \mathrm{~g})$ as in the preceding experiment, to yield the title compound ($1.5 \mathrm{~g}, 67 \%$), m.p. 64$67^{\circ} \mathrm{C}$ from ethanol (Found: C, $49.05 ; \mathrm{H}, 4.6 \% ; \mathrm{M}^{+}, 412$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{IO}_{4}$ requires $\mathrm{C}, 49.53 ; \mathrm{H}, 4.16 \% ; M, 412$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3580,3050 and $1580 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.79(1 \mathrm{H}$, bd, $J 7.6, \mathrm{OH})$, $2.11(1 \mathrm{H}$, ddd, $J 9.3,10.0,13.2,3-\mathrm{Ha}), 2.56(1 \mathrm{H}$, ddd, $J 2.5,6.0$, $13.3,3-\mathrm{Hb}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.21(1 \mathrm{H}, \mathrm{dd}, J 5.3,9.8,9-\mathrm{Ha})$, $4.31(1 \mathrm{H}$, dd, $J 5.1,9.8,9-\mathrm{Hb}), 4.61$ (1 H , dddd, $J 2.5,5.1,5.3$, $10.0,2-\mathrm{H}), 4.98(1 \mathrm{H}, \mathrm{bm}, 4-\mathrm{H}), 6.41(1 \mathrm{H}, \mathrm{d}, J 2,5,8-\mathrm{H}), 6.56(1$ H , dd, $J 2.5,8.5,6-\mathrm{H}), 6.74\left(1 \mathrm{H}\right.$, ddd, $\left.J 1.3,7.3,7.8,4^{\prime}-\mathrm{H}\right), 6.86(1$ H, dd, $\left.J 1.3,8.3,6^{\prime}-\mathrm{H}\right), 7.30\left(1 \mathrm{H}\right.$, ddd, $\left.J 1.6,7.3,8.3,5^{\prime}-\mathrm{H}\right), 7.39(1$ $\mathrm{H}, \mathrm{dd}, J 0.7,8.5,5-\mathrm{H})$ and $7.78\left(1 \mathrm{H}, \mathrm{dd}, J 1.6,7.8,3^{\prime}-\mathrm{H}\right)$.

2-(2'-Iodo-4', 5'-dimethoxyphenoxymethyl)-7-methoxy-

 chroman-4-ol 21c.-2-(2'-Iodo-4', 5'-dimethoxyphenoxy-methyl)-7-methoxychromen-4-one (0.5 g) was reduced with sodium borohydride $(0.25 \mathrm{~g})$ as in the preceding experiment, to yield the title compound ($0.43 \mathrm{~g}, 83 \%$), m.p. $93-95^{\circ} \mathrm{C}$ from ethanol (Found: C, 48.7; H, 4.85; $\mathrm{M}-\mathrm{H}^{+}, 471 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{IO}_{6}$ requires $\mathrm{C}, 48.32 ; \mathrm{H}, 4.48 ; M, 472)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3580,3440$ and $1610 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.80(1 \mathrm{H}, \mathrm{bd}, J 7.5, \mathrm{OH}), 2.00(1 \mathrm{H}$, ddd, J 9.6, 9.6, 13.3, 3-Ha), 2.48 (1 H , ddd, $J 2.4,5.8,13.3,3-\mathrm{Hb}), 3.70$, 376 and 3.79 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.09 (1 H , dd, J5.0, 9.9, 9-Ha), $4.20(1 \mathrm{H}$, dd, $J 5.4,9.9,9-\mathrm{Hb}), 4.51$ (1 H , dddd, $J 2.4,5.0,5.4,9.6$, $2-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{bm}, 4-\mathrm{H}), 6.33(1 \mathrm{H}, \mathrm{d}, J 2.4,8-\mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{dd}$, $J 2.4,8.6,6-\mathrm{H}), 6.50\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right), 7.11\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right)$ and $7.29(1$ $\mathrm{H}, \mathrm{d}, J 8.6,5-\mathrm{H})$.
2-(2'-Iodophenoxymethyl)-2H-chromene 22a.-2-(2'-Iodo-

 phenoxymethyl)chroman-4-ol (1.1 g) was refluxed in toluene (70 cm^{3}) with toluene-p-sulfonic acid (PTSA) (0.1 g) for 10 min . The cooled solution was washed with aq. sodium hydrogencarbonate, dried and evaporated to afford the title compound ($0.8 \mathrm{~g}, 76 \%$), as an oil (Found: $\mathrm{M}^{+}, 363.995 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{2}$ requires $M, 363.996) ; v_{\text {max }} / \mathrm{cm}^{-1} 3000 \mathrm{infl}, 1610$ and $1570 ; \delta_{\mathrm{H}} 4.10(1$H, dd, $J 6,10,9-\mathrm{Ha}), 4.27(1 \mathrm{H}, \mathrm{dd}, J 5,10,9-\mathrm{Hb}), 5.33(1 \mathrm{H}$, ddd, $J 3,5,6,2-\mathrm{H}), 5.89(1 \mathrm{H}, \mathrm{dd}, J 3,10,3-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{d}, J 10,4-\mathrm{H})$ and 6.71-7.40 ($7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$).

2-(2'-Iodophenoxymethyl)-7-methoxy-2H-chromene 22b.-2-(2'-Iodophenoxymethyl)-7-methoxychroman-4-ol (1) g) was stirred in acetyl chloride $\left(8 \mathrm{~cm}^{3}\right)$ for 30 min . After evaporation of the acid chloride, benzene was added and the mixture was refluxed for 1 h . The product solution was cooled and filtered through a charcoal-Kieselguhr column. Evaporation gave the title compound $(0.9 \mathrm{~g}, 95 \%)$ as an oil (Found: C, $51.85 ; \mathrm{H}, 4.2 \%$; $\mathrm{M}^{+}, 394 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IO}_{3}$ requires $\left.\mathrm{C}, 51.80 ; \mathrm{H}, 3.84 \% ; M, 394\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3000,1615$ and $1580 ; \delta_{\mathrm{H}} 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.06(1 \mathrm{H}$, dd, $J 5,10,9-\mathrm{Ha}), 4.25(1 \mathrm{H}, \mathrm{dd}, J 6,10,9-\mathrm{Hb}), 5.30(1 \mathrm{ddd}, J 4,5$, 6, 2-H), $5.80(1 \mathrm{H}, \mathrm{dd}, J 4,10,3-\mathrm{H}), 6.35-7.20(6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, 4-\mathrm{H})$, $7.15-7.30\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$ and $7.69\left(1 \mathrm{H}, \mathrm{dd}, J 2,7,3^{\prime}-\mathrm{H}\right)$.

2-(2'-Iodo-4', 5'-dimethoxyphenoxymethyl)-7-methoxy-2Hchromene 22c.-2-(2'-Iodo-4', 5^{\prime}-dimethoxyphenoxymethyl)-7-methoxychroman-4-ol (0.7 g) was dehydrated as in the preceding experiment, to yield the title compound $(0.6 \mathrm{~h}, 88 \%)$ as an oil (Found: M^{+}, 454.029. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IO}_{5}$ requires M, 454.028); $v_{\text {max }} / \mathrm{cm}^{-1} 3000$ and $1610 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.75,3.81$ and 3.82 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 4.8,10.0,9-\mathrm{Ha}), 4.21(1 \mathrm{H}, \mathrm{dd}$, $J 6.6,10.0,9-\mathrm{Hb}), 5.28(1 \mathrm{H}$; ddd, $J 3.6,4.8,6.6,2-\mathrm{H}), 5.70(1 \mathrm{H}$, dd, $J 3.6,10.0,3-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J 2.5,8-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{dd}, J 2.5$, $8.0,6-\mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{d}, J 10.0,4-\mathrm{H}), 6.53\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{H}\right), 6.90(1 \mathrm{H}$, $\mathrm{d}, J 8.0,5-\mathrm{H})$ and $7.17\left(1 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right)$.

6,6a-Dihydrorotoxen 23a.-(a) 2-(2'-Iodophenoxymethyl)2 H -chromene (0.8 g), palladium(iI) acetate $(0.4 \mathrm{~g})$, triphenylphosphine (0.8 g), and triethylamine $\left(2.3 \mathrm{~cm}^{3}\right)$ were heated at $80^{\circ} \mathrm{C}$ in dry acetonitrile ($10 \mathrm{~cm}^{3}$) with stirring under argon for 12 h . The solvent was evaporated off and the residue was eluted with chloroform through a short alumina (grade 3) column. The eluate was evaporated and the product was chromatographed on silica using cyclohexane-ether (9:1), to afford the title compound ($0.3 \mathrm{~g}, 58 \%$) as needles from methanol, m.p. 109$110{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 80.95 ; \mathrm{H}, 5.3 \% ; \mathrm{M}^{+}, 236 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$ requires C, $81.37 ; \mathrm{H}, 5.08 \% ; M, 236$); $v_{\text {max }} / \mathrm{cm}^{-1} 3040 \mathrm{infl}, 3000$ infl, 1600 , 1570 and $1120 ; \lambda_{\text {max }} / \mathrm{nm}(\varepsilon) 211$ (4.34), 236infl (3.95), 244 (4.09), 252 (4.08), 286infl (3.71), 296 (3.84), 307 (3.79), 332infl (4.01), 346 (4.18) and $362(4.05) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 4.18(1 \mathrm{H}, \mathrm{dd}, J 10.0,10.9,6-$ $\mathrm{Ha}), 4.61(1 \mathrm{H}, \mathrm{dd}, J 5.4,10.0,6-\mathrm{Hb}), 5.37(1 \mathrm{H}$, ddd, $J 2.3,5.4$, $10.9,6 \mathrm{a}-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{d}, J 2.3,12-\mathrm{H}), 6.84-7.27(7 \mathrm{H}, \mathrm{ArH})$ and 7.64 ($1 \mathrm{H}, \mathrm{dd}, J 1.5,7.9,1-\mathrm{H}$).
(b) Triphenylphosphine(salen)cobalt(iII) bromide (0.67 g) was dissolved in dry THF ($15 \mathrm{~cm}^{3}$) under a stream of nitrogen, and freshly prepared sodium amalgam ($1 \% ; 0.02$ mol sodium) was added. The mixture was stirred until the colour changed from dark brown through red to deep green. The solution was transferred via a catheter to a dry flask in the dark under nitrogen and 2-(2'-iodophenoxymethyl)- 2 H -chromene (0.36 g) in THF ($2 \mathrm{~cm}^{3}$) was added. The mixture was stirred at ambient temperature for 24 h . The solvent was then evaporated. The residue was dissolved in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and irradiated and refluxed with a tungsten lamp (500 W). The solvent was evaporated, and the product chromatographed as above to yield the title compound ($0.11 \mathrm{~g}, 48 \%$), as yellow needles from methanol, m.p. $109-110^{\circ} \mathrm{C}$, spectroscopically identical with the above sample.

9-Methoxy-6,6a-dihydrorotoxen 23b.-2-(2'-Iodophenoxy-methyl)-7-methoxy- 2 H -chromene (0.9 g), palladium(iI) acetate $(0.3 \mathrm{~g})$, triphenylphosphine $(1 \mathrm{~g})$, and triethylamine $\left(2.5 \mathrm{~cm}^{3}\right)$ were heated at $70{ }^{\circ} \mathrm{C}$ in dry acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ with stirring under argon for 12 h . The solvent was evaporated off and the residue was eluted with chloroform through a short alumina
(grade 3) column. The eluate was evaporated and the product was chromatographed on silica using cyclohexane-ether $(9: 1)$, to afford two products. The first eluted was the title compound ($0.15 \mathrm{~g}, 25 \%$), m.p. $138-139{ }^{\circ} \mathrm{C}$ from methanol (Found: C, 76.8; $\mathrm{H}, 5.4 \% ; \mathrm{M}^{+}, 266 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.68 ; \mathrm{H}, 5.30 \% ; M$, 266); $v_{\text {max }} / \mathrm{cm}^{-1} 3000,1620$ and 1580 ; $\lambda_{\text {max }} / \mathrm{nm} 214$ (4.37), 242infl (4.08), 250 (4.23), 258 (4.19), 291infl (3.57), 300infl (3.72), 313 (3.88), 339infl (4.25), 350 (4.27) and $365(4.27) ; \delta_{\mathrm{H}}(250 \mathrm{MHz})$ 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.17 ($1 \mathrm{H}, \mathrm{dd}, J 10.1,10.8,6-\mathrm{Ha}$), $4.61(1 \mathrm{H}$, dd, $J 5.4,10.1,6-\mathrm{Hb}) .5 .33$ (1 H, ddd, $J 2.5,5.4,10.8,6 \mathrm{a}-\mathrm{H}), 6.42$ ($1 \mathrm{H}, \mathrm{d}, J 2.5,8-\mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{dd}, J 2.5,8.3,10-\mathrm{H}), 6.80(1 \mathrm{H}, \mathrm{d}, J$ $2.3,12-\mathrm{H}), 6.88(1 \mathrm{H}$, dd, $J 1.2,8.5,4-\mathrm{H}), 6.98(1 \mathrm{H}$, ddd, $J 1.2,7.4$, $8.0,2-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{d}, J 8.3,11-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{ddd}, J 1.6,7.4,8.5$, $3-\mathrm{H}$) and 7.62 ($1 \mathrm{H}, \mathrm{dd}, J 1.6,8.0,1-\mathrm{H}$).

The second compound eluted crystallised from light petroleum-ether to yield brownish cubic crystals of the bis(triphenylphosphine) palladium(II) intermediate 25 ($0.6 \mathrm{~g}, 26 \%$), the structure of which was determined by X-ray crystallography. ${ }^{15}$ Heating this compound in toluene gave a quantitative yield of the dihydro-rotoxen 23b, identical with the above sample.

2,3,9-Trimethoxy-6,6a-dihydrorotoxen 23c.-2-(2'-Iodo-4',5'-dimethoxyphenoxymethyl)-7-methoxy-2H-chromene (0.5 g), palladium(II) acetate (0.15 g), triphenylphosphine (0.45 g), and triethylamine $\left(1.2 \mathrm{~cm}^{3}\right)$ were heated at $80^{\circ} \mathrm{C}$ in dry acetonitrile ($10 \mathrm{~cm}^{3}$) with stirring under argon for 12 h . Product isolation as in the previous experiments afforded the title compound $(0.2 \mathrm{~g}$, 56%), m.p. $135-136{ }^{\circ} \mathrm{C}$ (Found: C, 70.1; H, 5.7\%; $\mathrm{M}^{+}, 326$. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $\mathrm{C}, 69.93 ; \mathrm{H}, 5.56 \% ; M, 326$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3030infl, 1610 and 1575 ; $i_{\text {max }} / \mathrm{nm} 214$ (4.25), 243infl (4.03), 250 (4.13), 259 (4.07), 311 infl (3.74), 344infl (4.24), 358 (4.45) and 376 (4.37); $\dot{\delta}_{\mathrm{H}}(250 \mathrm{MHz}) 3.79,3.86$ and $3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.14$ (1 $\mathrm{H}, \mathrm{dd}, J 9.9,10.9,6-\mathrm{Ha}), 4.57(1 \mathrm{H}, \mathrm{dd}, J 6.0,9.9,6-\mathrm{Hb}), 5.30(1 \mathrm{H}$, ddd, $J 2.3,6.0,10.9,6 \mathrm{a}-\mathrm{H}), 6.42(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, 2.5$, $8-\mathrm{H}), 6.49(1 \mathrm{H}, \mathrm{dd}, J 2.5,8.3,10-\mathrm{H}), 6.61(1 \mathrm{H}, \mathrm{d}, J 2.3,12-\mathrm{H})$, $7.00(1 \mathrm{H}, \mathrm{d}, J 8.3,11-\mathrm{H})$ and $7.01(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$.

Dihydroxylation of 2,3,9-Trimethoxy-6,6a-dihydrorotoxen 23c.-Compound 23c (50 mg) and osmium tetroxide (5 mg) in tert-butyl alcohol $\left(0.5 \mathrm{~cm}^{3}\right)$, were stirred together in acetone (10 cm^{3}) and water ($2 \mathrm{~cm}^{3}$) at room temperature for 14 d . Excess of aq. sodium metabisulphite was added and the mixture was extracted with ethyl acetate. The organic extracts were filtered through Kieselguhr-magnesium sulfate, and evaporated, to yield the diol $27(52 \mathrm{mg}, 92 \%)$, m.p. $223-225^{\circ} \mathrm{C}$ from methanol (Found: $\mathrm{M}^{+}, 360.121 . \quad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{7}$ requires $M, 360.121$); $v_{\text {max }}(\mathrm{mull}) / \mathrm{cm}^{-1} 3380 \mathrm{infl}$ and $1630 ; \dot{\delta}_{\mathrm{H}}(250 \mathrm{MHz}) 2.41(1 \mathrm{H}, \mathrm{s}$, $12 \mathrm{a}-\mathrm{OH}$), $2.77(1 \mathrm{H}, \mathrm{d}, J 11.6,12-\mathrm{OH}$), 3.79, 3.84 and 3.88 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.34\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}, 6 \mathrm{a}-\mathrm{H}\right), 4.94(1 \mathrm{H}, \mathrm{d}, J 11.6,12-\mathrm{H})$, $6.41(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.44(1 \mathrm{H}, \mathrm{d}, J 2.5,8-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{dd}, J 2.5,8.7$, $10-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{d}, J 8.7,1-\mathrm{H})$ and $7.84(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$.
(\pm)-Munduserone 29.-The diol 27 (10 mg) was stirred in dry dichloromethane ($10 \mathrm{~cm}^{3}$) with activated manganese dioxide $(0.3 \mathrm{~g})$ for 12 h at room temperature. The mixture was filtered through Kieselguhr and evaporated. The product was refluxed in acetic acid $\left(1 \mathrm{~cm}^{3}\right)$ with activated zinc powder $(0.3 \mathrm{~g})$. The solvent was evaporated off, and the residue, in chloroform, was filtered through Kieselguhr. After evaporation the final product was purified by HPLC (reverse phase, C8, methanol-water, $3: 1$), to afford the title compound ($2 \mathrm{mg}, 21 \%$) (Found: M^{+}, 342.111. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $\left.M, 342.110\right)$; $\dot{\delta}_{\mathrm{H}}(250 \mathrm{MHz}) 3.77$, 3.80 and 3.81 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.85 ($1 \mathrm{H}, \mathrm{d}, J 4.1,12 \mathrm{a}-\mathrm{H}$), 4.19 (1 H, bd, $J 12.1,6-\mathrm{Ha}), 4.64(1 \mathrm{H}, \mathrm{dd}, J 3.1,12.1,6-\mathrm{Hb}), 4.95(1 \mathrm{H}$, dd, $J 3.1,4.1,6 \mathrm{a}-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, J 2.4,8-\mathrm{H}), 6.47(1 \mathrm{H}, 4-\mathrm{H}), 6.58$ $(1 \mathrm{H}, \mathrm{dd}, J 2.4,8.8,10-\mathrm{H}), 6.76(1 \mathrm{H}, \mathrm{d}, J 0.8,1-\mathrm{H})$ and $7.87(1 \mathrm{H}$, $\mathrm{d}, J 8.8,11-\mathrm{H})$.

6a,12a-cis-6,6a,12,12a-Tetrahydrorotoxen 30.-2-(2-Iodo-phenoxymethyl)- 2 H -chromene (0.6 g) in dry benzene ($20 \mathrm{~cm}^{3}$) at reflux was treated with a solution of tributyltin hydride (1.1 equiv.) in benzene ($0.03 \mathrm{~mol} \mathrm{dm}^{-3}$) containing azoisobutyronitrile (AIBN) (0.05 equiv.) over 30 min . The reaction mixture was then refluxed for 7 h , when it was cooled and evaporated. The residue was chromatographed on silica (ethyl acetatehexane, $1: 2$) to yield the title compound $(0.29 \mathrm{~g}, 74 \%)$, m.p. 145$149{ }^{\circ} \mathrm{C}$ (lit., ${ }^{22}$ m.p. $146-148^{\circ} \mathrm{C}$) from methanol (Found: $\mathrm{C}, 79.05$; $\mathrm{H}, 6.1 \% ; \mathrm{M}, 239.093 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.64 ; \mathrm{H}, 5.94 \% ; M$, 238.099); $v_{\text {max }} / \mathrm{cm}^{-1} 3030,1620$ and $1580 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}), 3.17$ (1 H , dd, $J 6.7,16.6,12-\mathrm{Ha}$), 3.24 (1 H , dd, $J 5.6,16.6,12-\mathrm{Hb}$), $3.43(1 \mathrm{H}$, ddd, $J 4.4,5.6,6.7,12 \mathrm{a}-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dd}, J 2.2,12.1$, $6 \mathrm{a}-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{dd}, J 6.3,12.1,6-\mathrm{Hb}), 4.68(1 \mathrm{H}$, bdd, $J 4.4,6.3$, 6a-H), 6.80-6.90 (4 H, m, ArH), 7.03-7.15 (3 H, m, ArH) and 7.19-7.22 (1 H, m, ArH).

2-(2-Iodophenoxymethyl)chromanone.-(a) 2-(2-Iodophenoxymethyl)chromanol (0.38 g) was added rapidly to a stirred suspension of pyridinium chlorochromate (PCC) (0.32 g) in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 1 h , diluted with ether, and the solution was decanted from the deposited solids. The organic phase with ether washings was filtered through Florisil and evaporated. The residue crystallised from methanol to yield the title compound $(0.35 \mathrm{~g}, 35 \%)$, m.p. $85-$ $87^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.55 ; \mathrm{H}, 3.45 \% ; \mathrm{M}^{+}, 379.990 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{3}$ requires $\mathrm{C}, 50.53 ; \mathrm{H}, 3.45 \% ; M, 379.991) ; v_{\text {max }} / \mathrm{cm}^{-1} 3000,1685$, 1612 and $1585 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 2.90(1 \mathrm{H}$, dd $, J 3.0,17.0,3-\mathrm{Ha}), 3.20$ ($1 \mathrm{H}, \mathrm{d}, J 17.0,3-\mathrm{Hb}), 4.30(1 \mathrm{H}, \mathrm{dd}, J 4.4,10.2,9-\mathrm{Ha}), 4.36(1 \mathrm{H}$, dd, $J 4.4,10.2,9-\mathrm{Hb}), 4.85(1 \mathrm{H}, \mathrm{dt}, J 3.0,4.4,2-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J$ 1.3, 7.6, Ar-H), 6.90 ($1 \mathrm{H}, \mathrm{dd}, J 1.3,8.2$, Ar-H), $7.02-7.09$ ($2 \mathrm{H}, \mathrm{m}$, Ar-H), 7.32 (1 H, m, Ar-H), 7.51 (1 H, m, ArH), $7.80(1 \mathrm{H}, \mathrm{dd}, J$ 1.3, 8.0, Ar-H) and 7.92 ($1 \mathrm{H}, \mathrm{dd}, J 1.3,8.0,5-\mathrm{H})$.
(b) Borane-THF ($25 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) was added dropwise to $(-)-x$-pinene (7.8 g) at 0 C under nitrogen, and the mixture was stirred for 4 h . A solution of 2-(2-iodophenoxymethyl)-chromen-4-($4 H$)-one $(1.0 \mathrm{~g}$) in the minimum of THF was added dropwise into the reagent solution. The resulting yellow solution was allowed to warm to room temperature, and then stirred for 15 h . After addition of sufficient water to destroy excess of borane, the mixture was evaporated, and the residue was purified by chromatography on silica (chloroform-cyclohexane, $1: 2$), to yield the title compound ($0.85 \mathrm{~g}, 85^{\circ}$), m.p. 86-89 C from methanol, $[x]_{\mathrm{D}}^{20}+5.3$ (c 1.2, chloroform) (Found: C, 50.6; $\mathrm{H}, 3.4 \% ; \mathrm{M}^{+}, 379.991$). The IR and ${ }^{1} \mathrm{H}$ NMR spectra were indistinguishable from those of the above specimen.

4-Acetoxy-2-(2-iodophenoxymethyl)-2H-chromene 31.-2-(2Iodophenoxymethyl)chromanone (0.2 g) was dissolved in ispropenyl acetate ($10 \mathrm{~cm}^{3}$) with conc. sulphuric acid (2 drops), and the mixture was refluxed for 3 h , when it was cooled and evaporated. The black residue was chromatographed on Florisil (chloroform-hexane, $1: 1$) to yield the title compound $(0.13 \mathrm{~g}$, 61%), as a yellowish oil [Found: C, $51.15 ; \mathrm{H}, 3.55^{\circ}$; $\mathrm{M}^{+}, 423$ $(\mathrm{FAB}+\mathrm{ve}) . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{IO}_{4}$ requires $\left.\mathrm{C}, 51.18 ; \mathrm{H}, 3.58^{\circ}{ }_{0} ; M, 422\right]$: $v_{\text {max }} / \mathrm{cm}^{-1} 1760,1610$ and $1590 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 4.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $4.17(1 \mathrm{H}, \mathrm{dd}, J 5.3,9.8,9-\mathrm{Ha}), 4.39(1 \mathrm{H}, \mathrm{dd}, J 6.0,9.8,9-\mathrm{Hb})$, $5.51(1 \mathrm{H}$, ddd, $J 3.8,5.3,6.0,2-\mathrm{H}) .5 .69(1 \mathrm{H}, \mathrm{d}, J 3.8,3-\mathrm{H})$ and 6.72-7.77 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

6a,12a-cis-12,12a-cis-12-Acetox-6,6a,12,12a-tetrah1drorotoxen 32.-Tributyltin hydride in dry benzene (1.1 equiv., $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$) containing AIBN (0.05 equiv.) was added dropwise over 1 h to a solution of the preceding enol acetate (50 mg) in benzene ($0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ solution) at reflux. The reaction mixture was heated at reflux for 3 h , cooled, and evaporated. The residue was chromatographed on silica (ethyl acetatehexane, $1: 4$) to afford the title compound ($43.4 \mathrm{mg}, 62^{\circ}{ }_{o}$), m.p.
${ }^{126-129}{ }^{\circ} \mathrm{C}$ from methanol (Found: C, $72.95 ; \mathrm{H}, 5.4 \% ; \mathrm{M}^{+}$ 296.106. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 72.97 ; \mathrm{H}, 5.41 \% ; M, 296.105$); $v_{\text {max }} / \mathrm{cm}^{-1} 1770,1610$ and $1580 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.65 (1 H , dd, $J 5.1,5.3,12 \mathrm{a}-\mathrm{H}$), 4.34 (1 H , dd, $J 5.2,10.2,6-\mathrm{Ha}$), 4.54 ($1 \mathrm{H}, \mathrm{d}, J 10.2,6-\mathrm{Hb}), 4.92$ ($1 \mathrm{H}, \mathrm{dd}, J 5.1,5.2,6 \mathrm{a}-\mathrm{H}), 6.38$ (1 $\mathrm{H}, \mathrm{d}, J 5.3,12-\mathrm{H}), 6.85-6.97(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.17-7.35(4 \mathrm{H}, \mathrm{m}$, ArH). Two compounds, m.p. $163^{\circ} \mathrm{C}$ and m.p. $147-147.5^{\circ} \mathrm{C}$, of the same structure but of undetermined stereochemistry, has been described in the literature. ${ }^{23.23}$ These may be stereoisomers, solvates, or different crystalline forms, a common feature of rotenoid chemistry.

Acknowledgements

We are grateful for support from Wellcome Environmental Health.

References

1 F. B. LaForge, H. L. Haller and L. E. Smith, Chem. Rev., 1933, 12, 181: L. Crombie, Fortschr. Chem. Org. Naturst., 1963, 21, 275 ; T. J. Haley, J. Environ. Pathol. Toxicol., 1978, 1, 315.
2 W. Ise, H. Haiker and H. Waiss, Archiv. Perspect. Mitochondrial Res. Proc. Int. Slimp., ed. E. Quagliariello, Elsevier, Amsterdam, 1985, vol. 2, 317.
3 J. Nawrot, J. Harmatha, I. Kostova and I. Obnyanov, Biochem. Sy:sI. Ecol., 1989, 17, 55.
4 K. A. Haque, Pak. J. Sci. Ind. Res., 1971, 14, 385.
5 L. E. Marshall and R. H. Himes, Biochem. Biophys. Acta, 1978, 543, 590.

6 J. Burgos and E. R. Redfearn, Biochim. Biophys. Acta, 1965, 110, 475; L. Ernster, G. Dallner and G. F. Azzone, J. Biol. Chem., 1963, 238, 1124; A. M. Johnson-Flanagan and M. S. Spencer, Planı Physiol., 1981, 68, 1211.

7 D. Carson, M. W. Cass, L. Crombie, I. Holden and D. A. Whiting, J. Chem. Soc., Perkin Trans. I, 1982, 773, and refs. cited therein; S. M. F. Lai, J. J. A. Orchison and D. A. Whiting, Tetrahedron, 1989, 45, 5895.
8 L. Crombie, P. J. Godin, K. S. Siddalingaiah and D. A. Whiting, J. Chem. Soc., 1961, 2866.
9 N. Finch and W. D. Ollis, Proc. Chem. Soc., 1960, 176.
10 Inter alia: A. Kasahara, T. Izumi, K. Endo, T. Takeda and M. Ookita, Bull. Chem. Soc. Jpn., 1974, 47, 1967; H. Horino, M. Arai and N. Inoue; Bull. Chem. Soc. Jpn., 1974, 47, 1683; H. Horino and N. Inoue, J. Chem. Soc., Chem. Commun., 1976, 500.
11 S. Cacchi and G. Palmieri, Synthesis, 1984, 575.
12 H. A. Offe, Chem. Ber., 1938, 71 B, 1837.
13 I. Dass, J. M. Sehgal and T. R. Seshadri, J. Sci. Ind. Res., 1954, 13B, 160.

14 R. B. Gammill, J. Org. Chem., 1984, 49, 5035.
15 We thank Dr. M. J. Begley for this information; details will appear in a full crystallographic paper.
16 (a) P. C. Amos and D. A. Whiting, J. Chem. Soc., Chem. Commun., 1987, 510; (b) N. Chida, M. Ohtsuka and S. Ogawa, Tetrahedron Lett., 1991, 4525; (c) R. Grigg, V. Sridharan, P. Stevenson, S. Sukirthalingam and T. Worakun, Tetrahedron, 1990, 46, 4003.
17 H. Bhandal, G. Pattenden and J. J. Russell, Tetrahedron Lett., 1986, 2299; V. Patel, G. Pattenden and J. J. Russell, Tetrahedron Lett., 2303, and refs. cited therein.
18 D. J. Adam, L. Crombie and D. A. Whiting, J. Chem. Soc. C, 1966, 542; D. G. Carlson, D. A. Weisleder and W. H. Tallent, Tetrahedron, 1973, 29, 2731.
19 L. Crombie and P. J. Godin, J. Chem. Soc., 1961, 2861.
20 L. Crombie, G. Proudfoot and D. A. Whiting, unpublished results.
21 G. Buchi, L. Crombie, P. J. Godin, J. S. Kaltenbronn, K. S. Siddalingaiah and D. A. Whiting, J. Chem. Soc., 1961, 2843.
22 A. C. Jain, A. Kumar and A. K. Kohli, J. Sci. Ind. Res., 1978, 37, 606.
23 O. Dann and G. Volz, Annalen, 1960, 631, 111.
Paper 1/06047C
Received 29th November 1991
Accepted 16th December 1991

